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In the design of optimal control processes the restrictions considered 

are in most cases only those imposed on the control parameters. It is 

only in a few studies, in the solution of particular problems, that 

attempts have been made to consider restrictions on the coordinates. In 

the general formulation, the problem of optimization when there are re- 

strictions on the coordinates has been studied in l-11 and [21. 

In the present article we discuss the variational formulation of 

problems in the optimization of control processes in systems whose co- 

ordinates and parameters may be bounded. The article lists the funda- 

mental [21 necessary conditions for a minimum of the appropriate func- 

tionals making it possible to construct solutions of such problems. 

1. Introduction. The general optimization problem for control 

processes is usually formulated for systems described by the differential 

equations [a] 

& = fs(.x,, . . ., D’,,, u,, . . ., I<>,,, f) -r f) (S .= i,..., If; ( ,I ,1 ) 

which will be supplemented by the finite relationships [3,41 

$k :L $k $1, . . . , &,, L:, , . . . , urn, t) == t, (k = f...., 71 (1.2) 

1Iere ns(t) are the coordinates of the system and u,(t) are the con- 

trol parameters. ‘Ihe derivatives of the latter do not enter into the 

problem equations. 

Optimization problems for systems with bounded control parameters in 
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variational formulation have been studied in [3,41. These articles de- 

scribe methods for the transition to open regions of variation of the 

control parameters and show that in optimal operation the control para- 

meters ak may assume values corresponding to boundary points of the 

closed region II* of admissible values. The necessity of considering 
boundary values of the control parameters in these problems did not com- 

plicate their solution very much, since the systems under investigation 

are described by the same equations both inside and outside the boundary 

of the region II*. 

A similar result is obtained in optimization problems involving con- 

trol processes in systems with bounded coordinates: the coordinates and 

the control parameters of such systems, in optimal oper.ation, may also 

assume values corresponding to the boundaries of the closed regions X* 

and U* of permissible variation of coordinates and control parameters. In 

this case, however, the fact that it is possible for the coordinates to 

go beyond the boundary may greatly complicate the problem of designing 

optimal modes of operation. The reasons for this are the following: 

The behavior of the integral curves of a system with bounded coordi- 

nates and given control parameters is defined by Equations (1.1). It may 

happen that these curves do not include any which lie, even in part, on 

the boundary of the closed region of permissible variation of the co- 

ordinates, since -Equations (1.1) and the equation of this boundary may 

not be valid simultaneously. Furthermore, Equations (1.1) may change 

their form or their order wh,en the representative point goes beyond the 

boundary. 

For this reason, before studying the construction of relationships de- 

fining optimal modes of operation, we should pause to clarify the nature 

of the restrictions on the coordinates with which we shall have to deal 

in the solution of optimization problems. 

For the sake of definiteness we assume that the region X* of per- 

missible variation of the coordinates xl, . . ., xn is defined by the in- 

equality [I, 21 

6(z,, . . ..%I) <o (1.3) 

It may happen that this inequality does not reflect the internal pro- 

perties of this system, and its coordinates in arbitrary modes of motion 

may go beyond the limits of the region X8. We may then say that the re- 

quirement (1.3) is imposed externally on the system. 

We may obtain an idea of these restrictions from a consideration of 

the following example. Let an optimal process be constructed in a system 



Optimization of control processes 543 

without consideration of restrictions on the coordinates, and let the co- 

ordinates in this process assume undesirable or prohibited values. Then 

the optimization problem may be restated, and this new formulation must 

be such as to reflect the fact that certain definite values of the co- 

ordinates are prohibited. In some cases this will lead to inequality of 

the form (1.3). 

Restrictions on the coordinates imposed externally upon the system 

will hereafter be called restrictions of the first type: 

Restrictions of the second type upon the coordinates reflect the pre- 

sence in the system of restrictive factors, such as stops, saturation 

zones, etc. In this case, in any motion of the system its coordinates 

cannot go beyond the limits of a closed region of permissible coordinate 

variation. 

We must deal with restrictions of the second type on the coordinates, 

for example, when an indirect system for controlling an aircraft contains 

stops on the control surfaces. Then the control surfaces cannot assume 

positions outside the intervals defined by the stops. 

Similar restrictions are found in a control system for the pressure in 

the boiler when safety valves are used, and in many other cases. 

It should be noted that restrictions of both types may be represented 

by identical inequalities. This may lead to the erroneous conclusion that 

the mathematical description of these restrictions in optimization prob- 

lems will be identical. In actual fact, of course, this is not true. 

For example, we may try using restrictions of the first type on the 

conJro1 surface coordinates to take account of the presence of stops in 

the control system for the motion of an aircraft. But such restrictions 

will keep the coordinate values at the boundary independently of the 

stops, and these stops may be removed. In such a formulation the control 

surfaces do not exert any pressure on the stops. This pressure may be 

taken into account by means of restrictions of the second type. 

References [1,2I study in detail the coordinate limitations imposed 

externally (first type), represented by the inequality (1.3). It is 
established in these works that such a restriction may be realized if the 

optimal trajectory is to consist of a finite number of segments located 

within the region X* or on its boundary. It is shown that in order to 

have a segment of the trajectory in the interval tl < t < tz lie on the 

boundary it is necessary and sufficient to require that the equality 

6 [x1 (h), . . . , %I @I)] = 0 (1.4) 
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be satisfied at time t = tl and that the relations 
(1.5) 

n a4 
qb+1 = $r+1(%. * *, zn, Ul P..., &?I, t) = 2 ag f* (51,. . . , z,, Ul, . . ., l&m t) = 0 

S==l * 

be satisfied over the entire interval tl Q t < t2. 

This function Y,+~ gives the projection of the phase velocity of the 

system on the external normal to the boundary 6= 0 of the region (1.3). 

Since this projection is equal to zero and the phase velocity is tangent 

to the boundary, the representative point will not exert a “pressure” on 

the boundary. 

The equality (1.5) imposes on the control parameters an additional 

relation of the form (1.2). Therefore, the end t = tp of the interval 

tl Q t < tq coincides with the instant immediately to the right of which, 

at t = tq + 0, there is no point at which Equation (1.5) can be satisfied. 

‘Ihe values of the coordinates xs(t,) at the point t = tz are related by 

the equation 

If the representative point touches the boundary of the region X*, 

which corresponds to a restriction of the second type, it will remain on 

the boundary until its “pressure” on the boundary changes sign. There- 

fore, in the case of restrictions of the second type, the representative 

point will always move along the boundary so long as the normal component 

of the phase velocity is non-negative: 

3r+1(51,...,5na,,...,u,,t)),O (1.7) 

At the boundary points the equality 6= 0 is satisfied. 

At time t = tq the phase velocity touches the boundary, so that at 

t = t2 Formula (1.6) is again valid, with yy, + l(tz + 0) < 0. 

Since in the case of restrictions of the second type the representa- 

tive point may produce a pressure on the boundary of the region X*, the 

motion of the system along this boundary can be described by equations 

different from the equations of motion of the point within the region 

X*. In the simplest problem of this type, which will be considered here- 

after, these equations are constructed by means of the equations of 

motion of the system within the region .Y*. However, in the general case 

this is not true and setting up the equations of mction of the system 

for boundary points requires additional investigation in each concrete 

case. 



Optimization of control processes 645 

Ye shall hereafter study systems with restrictions of the second type, 

given by the inequalities 

58, < 0 (1-W 

where it will be assumed that 

the interior to the boundary, 

Equations (l.l), in which the 

equality xsp = 0. 

when the representative point passes from 

the motion of the system is described by 

equation numbered s’ is replaced by the 

By this method we can investigate restrictions 

equalities 

described by the in- 

(I.91 

2. Statement of the problem. In solving optimization problems 

for control processes with bounded coordinates we shall use the follow- 

ing general variational formulation: 

Among the coordinates x1, . . . , r,, which do not go beyond the limits 

of some closed region .Y* of allowable values and the control functions 

Ul’ ...I aI’ satisfying in the interval to< t <T the system of equa- 

tions 

g,=i,-f‘(X1 ,..., X,,Ul)...) u,,t)=O (s = 1, . . ., n) (2.1) 

and the finite relations 

9,x = $k (xl, . - ., %I, ul, . . ., hn, t) = 0 (k = l,..., r) (2.2) 

and related by the equations 

‘PI = ‘PI [Xl (to), . . .,~(to),t,,xl(q - * -,xn(q, Tl = 0 (2.3) 
(1 = I,..., Pd2sfi) 

we must find those which will give the functional 

J = g [xl (to). . * ~,xn(to)to, Xl(T), - - -,Gl (T), T.1 + 

+jh(x~,...IZn,ul,...,Um.t)dt 

L 

a minimum value. 

(2.41 

In this formulation no special emphasis was placed on the possibility 

that the control uk may lie in a given closed region of permissible 
variation. The reason for this is that the methods described in [3-71 

make it possible, by constructing auxiliary equalities of the form (2.2), 
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to pass to an open region for the control parameters. Hereafter we shall 

consider this passage to have been completed. 

We may try by analogous methods to pass to an open region of coordi- 

nate variation. However, such an approach will merely enable us to 

establish that the system coordinates in optimal modes of operation may 

assume values within and on the boundary of the region X*, and to obtain 

equations which define segments of optimal trajectories located within 

this region. The equations for segments lying on the boundary cannot be 

constructed by this method. This is not surprising, since when the co- 

ordinates of the system pass from the Interior to the boundary, as has 

already been shown, the equations of motion of the system may change, 

and this is not taken into account in such a construction. The ahove 

statement of the problem must therefore be modified, 

We shall consider an optimal trajectory to consist of a finite number 

of segments located either in the interior or on the boundary of the 

region X*. For the sake of definiteness, all the functions entering into 

Equations (2.1) and (2.2) which correspond to the boundary of the region 

X* will hereafter be written with a superscript zero. Functions associ- 

ated with a segment to the left of the boundary segment will be marked 

with a minus sign, and functions corresponding to a segment to the right 

of the boundary segment will be marked with a plus sign. 

If we are dealing with a restriction of the first type (an external 

restriction), for coordinate values on the boundary of the region X*, 

Equations (2.2) must be supplemented by the equality (1.5). In addition, 

we must take into consideration the condition (1.4), which defines the 

time at which the coordinates pass from the interior to the boundary, and 

the equality (1.6), which specifies the time at which the coordinates 

pass from the boundary into the interior of the region .X*. 

For restrictions of the second type the problem becomes more compli- 

cated, since when the coordinates of the system pass from the interior 

to the boundary, its equations of motion may change. In the simplified 

case which we discussed above, the equations 

g,o = 2,” - fsO (2210, . . ., &O, ZZIO, . . ., t&o, t) = 0 (s# s’), g, = X88 = fJ (2.5) 

will hold on the boundary. 

Ille instant t = tl when the system coordinates pass from the interior 

to the boundary is defined by the equality 

zs*(tl) = 0 (2.6) 

and at the .inatant t = tp wlten they pass from the boundary to tl[e 
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interior of the region, we will have 

fd [Xl (tz), . - ., %I (h), Ul @2), * * ‘P %n @2)? t21 = 0 (2.7) 

and f,t will change sign at this point. Inequalities of a different form 

may be considered in a similar manner. 

Equations (2.1) and (2.2), for suitable choice of the numbers n and r, 

describe the behavior of the system in either of the above cases. 

In this modified formulation the optimization problem for control pro- 

cesses in systems with bounded coordinates becomes a problem of the 

Mayer-Bolza type in the calculus of variations [81. By comparison with 

the cases considered earlier [3,41 it is considerably complicated by the 

necessity of taking into consideration the difference between the equa- 

tions of motion on different segments of the integral curves. In this 

respect it is reminiscent of the optimization problem for control pro- 

cesses in the case of equations with discontinuous right-hand sides [91. 

In the book by Bliss [81 and in [4] and [9], descriptions are given 

for the process ,of establishing the necessary conditions in variational 

problems in optimization. The corresponding reasoning and calculations 

may, of course, be extended to the cases considered here. However, even 

a brief discussion of these would occupy a great deal of space and is 

not given in the present article, although the results of such an ex- 

tension, with the appropriate explanations, are used in the rest of the 

article. 

As was done earlier, we shall consider the necessary condition for 

stationary state of the functional J and Weierstrass’s necessary condi- 

tion for its strong minimum. It will be assumed, of course, that all the 

requirements usually imposed in the calculus of variation on the func- 

tions entering into the formulation of the problem are satisfied. The 

functions which will make the functional J a minimum will be sought among 

the continuous coordinates z,(f) with piecewise continuous derivatives 

i,(t) and among piecewise continuous control parameters uk(t). 

3. Necessary condition for stationary state of the fnnc- 
tional J. Restrictions of the first type on the coordinates. 
For the sake of simplicity it will first be assumed that in t!le interval 

t0 < t < T there is only one point t = tl at which the coordinates of 

the system pass from the interior of the region .Y* to its boundary and 

that there are no other corner points [4. For definiteness, we shall 

consider the closed region .Y* to be defined by the inequality (1.3). 

‘ILis will enable us to make a comparison between the formulas obtained 

below and tile relations with the corresponding results established in 
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[lI and [2] . 

In the subinterval to Q t < tl the equations 

1 3 .- 1 _&- - fs- (d‘l--r . . ., xn-, u--, . . .) u,,l-, I) = 0 (s = I,..., nj (3.1) 

li’is- = Ij?k_(.T,_, . . ., zn-, u-, . . ., zz,,,-, 1) = 0 (k = I,..., r) (3.2: 

will hold, and in the s&interval tl< t < 7’ they must be replaced by the 

system 

n 
s”s- = AS .* o - fs” (qO, . . . , :c,1o, zr.,“, . . ., u,1;, 1) == 0 (s --_ l,... ,n) (3.3) 

+k” = $k (ZrC’, . . ., 2~', Zilo, . . ., ZE,,:, 1) = 0 (it = I,..., r + 1) (3.4) 

in which y, + 1 ’ is defined by the relation (1.5). 

It should be particularly emphasized that for any r < I we may have 

cases in which Equations (3.4) will have solutions with respect to the 

control parameters uk( t) in the region of permissible values. For r =m- 1 

the problem of optimizing the system motion corresponding to the bound- 

ary of the region X* may also become meaningless because these equalities 

may be satisfied only by one unique system of permissible functions uk( t). 
flereafter, therefore, we shall consider Equations (3.4) to be satisfied 

by permissible control parameters ak(t) in a non-unique manner. 

At times t = tl Equation (1.4) must be satisfied, and the functional 

I used in constructing the necessary condition for stationary state of 

the functional J must be taken in the following form [91 

1 = cp + %fi tq(h), * ..,z,(t,)] + [L-dt + fmt 

1. t1 

In Formula (3.5) the following notation is used 

L-= f,,- + 2 h,-g,- - 2 ph.- qk- = 2 As-is- - H- 

s=1 lc=l s-.:1 

HI- = Hk- + II,- = >, :il a,-j,--1 i /.&$.-Q(- (ho- = - 1) 
,. ‘, k-;l 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9, 
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Ho = Hx' + HP0 = i: h,"f," + i $$$ (ho”=-_) (3.10) 
e=o k=l 

and As-(t), Aso(t), am-, all’, pl and v1 are undetermined Lagrangean 

multipliers suitable for calculation. 

The stationary state condition is obtained by equating the first 

variation of the functional I to zero and is represented by the equality 

LIl = 0. 

Substituting into Equation (3.5) the functions L- and Lo from Formulas 
(3.7) and (3.8) and constructing this variation, we arrive at the equa- 

tion 

AI = AT + ylAfl+ (fo- - fo% at, - (fob, ato + (fob 6~’ + 

+4@ k,-8&- - 8H- a,“sctso 
s=1 

- aHo - pr+108qr+l” ] dt 
1. 

so that after the sums under the integral signs are integrated by parts 

once and the variations of the individual functions are expanded, we 

shall have 

(3.11) 

+ rz + (Hdt.] ato + [$ - (H&l 8T + 

+ jl [hs- ttl) - a,” (tl) + VI &] Ax, (tl) + [HA’ - HA-It, 8tl - 8 

h n 
- SF ( 8uk- dt - 

1, s=1 
a;- + 5) 8x,- - 5 s 

k=l k 
] 

T n 

- 

Here we use Equation (3.1) and (3.3) and the notation of (3.9) and 

(3.10); where no confusion results, we omit indices and use, for example, 

(fo-) t1 to represent the value of function f,,- at the point t = tl. 

The variation (3.11) must be taken equal to zero, and therefore the 
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coefficients for all independent variations of the variables will be 

equal to zero. lhe corresponding coefficients for dependent variations of 

the variables may be made zero by the choice of Lagrangean multipliers. 

After these operations we obtain the system of equations 

a;- + g = 0, (s = I,..., n) (3.12) 
s 

with the conditions 

8H- 
-= 
au,- 0, 

aJb+l” 
g + Pr++q- = 0 (k = I,..., m) 

the equalities 

acp -- h,(ta) = 0, 
ax, (to) 

a$$$)+kS(T)=O (s = I,..., n) 

2 + (Hh)f, =So, g-(&)*=0 

and the Erdmann-Weierstrass conditions 

(s= 1, . . . . n) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

In solving optimization problems we must also make use of Equations 

(3.1) to (3.4), the relation (2.3), the equality (1.4), and the continu- 

ity conditions on the coordinates 

G?- (M = Go (t1) (s = I,..., n) 

'Ihen the number 4n t 2m + 2r + 1 of Equations (3.1) to (3.4 

(3.13) will be equal to the number of functions x ,;(t), xsO(t) 

u,'(t), As-(t), AS'(t), n,-(t), pk'(t). 

The solution of the differential Equations (3.1), (3.3) and 

(3.18) 

), ), (3.12 

, u,-(t) 

(3.12) 

contains an constants of integration; to find these, in addition to the 

p multipliers p, and the values of t,,' tl, T, we must use the 4n + p + .3 

conditions (3.14), (3.X), (3.18), (2.3), (3.15) and (3.17). 

Let us now assume that in the interval t,, < t < T there is only one 

point t = t2 at which the coordinates of the system pass from the bound- 
ary to the interior of the region X*, and there are no other corner 

points. 

Then in the subinterval to < t< t2 Equations (3.3) and (3.4) are 
valid, and in the subinterval t2 < t < T we will have 
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g,+ = is+ -1,’ (qf, . . . , 3-k+, u1+, . . . ) u,+, t> = 0 (s=l,...,n) (3.19) 

qk+ = qk+ (x1+, . . . , s*+, q+, . . . , urn+, t) = 0 (k = 1, . . . , r) (3.20) 

with the relation (1.5) satisfied at time t = t2. 

In this case the functional T, which is used i.n the construction of 

the stationary state condition, should be taken in the form 

krp+fS’LOdt+\jL+dt (3.21) 
t* t: 

(since the point t = t2 will not be a corner point). Here 9 is defined 

by the equality (3.6), and the function Lo by the relation (3.51, in 

which Ho is expressible in the form (3.19). 

For L+ we obtain the formula 

L+ = fo+ + ; h,+g,+ + $. pk+qk+ = i h,+i,+ - H+ (3.22) 
s:=l k=l s=1 

where 

Go+ = - 1) (3.23) 

and hS+( t), pkt( t) are undetermined Lagrangean multipliers. 

Formulating and equating to zero the first variation AI of the func- 

tional I and repeating all of the above operations, we obtain the equa- 

tions 

is+ + g = 0, (s=l,... 9 n) (3.24) 
8 

is” + s + pr+,+ = 0 
s s 

aH+ o 

zy+= ’ 
&y + p,+; f&j = 0 (k = 1, . . . , nz) (3.25) 

Equations (3.15) and (3.16), and the Erdmann-Weierstrass conditions 

h,” (&) - A,+ (ts> = 0 (s = 19 . . . 3 n), (HA” - HA+)~, = 0 (3.26) 

!ve count the number of equations and functions and the number of con- 

stants and conditions whicll determine them, as in the previous case. 

We might have assumed at the very beginning that the interval 
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t0 Q t G T contains two points t = tl and t = t2 of the type described 
above. This would have complicated the calculation but would not have 

changed the final result. Even more general assumptions do not change 

the results. 

The discontinuities of the control parameters uk( t), if any exist in 

the interval t,, < t < T, are studied in the same way as in the articles 

[4,91. The special case in which the instant at which there is a discon- 

tinuity in the control parameter coincides with the instant at which the 

system coordinates pass to or from the boundary of the region X* is in- 

vestigated in the same way as in the article [9]. 

4. Stationary state condition for the functional J. Re- 
strictions of the second type on the coordinates. Let us con- 

sider restrictions which are simpler but are more frequently encountered; 

these are defined by the inequalities (1.8). For the sake of simplicity 

we shall first assume that there is only one restriction xl < 0, and we 

shall consider s’ = 1, which of course can always be done by means of a 

change in the numbering of the variables. 

We shall again assume that the interval t0 < t < T contains only one 

point t = tl at which the coordinates of the system pass from the in- 

terior to the boundary of the region X*. Then in the subinterval 

to < t Q tl we must use Equations (3.1) and (3.2), and in the interval 

tl < t Q T we shall have 

g,” = ZIC = 0 

g,” = &” - f,” (ZIO, . . . , znc, z&lo, . . . , UmC, t> = 0 

ljI; = gltQ (ZIG, . . . , znc, ulc, . . . , UmC, t> = 0 

(4.1) 

(s = 2, . . t n) (4.2) 

(k = 1, . . . t ~1 (4.3) 

in the functions f,” and yko we must set xl0 = 0. At time t = t 1 tile 

equality xl(tl) = 0 is satisfied. The functional I will have the form 

I=p+v,x,(t,)+5L-dt+iCdt 
1. tr 

(4.4) 

where 9 is defined by the equality (3.61, IA- andll- are defined by 

Formulas (3.7) and (3.9), and the function Lo is equal to 

k=l 

where 
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The f&t variation LU of the functional I is represented by the 

equality 

so that after transformations similar to the above, we obtain 

a 

A~Lp!!t_ 
s=l 

L 
% (to) - As (4,) 1 Axs (to) -t- ; [A -!- h, (T)] Ax, (2’) + 

‘S=1 8 

Again equating to zero the coefficients of the independent variations 

and choosing the Lagrangean multipliers in such a way as to make the co- 

efficients of the dependent variations of the variables vanish, we find 

the equations 

jLs- 1 au- - 0 

&- 
, @=I,. .., n), j”,o + g = 0 (s = 2, . . . , a) (4.g) 

8 
aw (-) dFI" 

ilu,-= ’ i)uh.j= 0 (k=l.....~Il) (4.9) 

the end conditions 

and the Erdmann-Weierstrass conditions 

A,- (f,) --- A,” (f,), (s = 2, . I . t “1, x1- (&) -t VI 1= 0 (4.12) 

(HA- - Hh”)f, = 0 (4.13) 

In order to solve the problem we must add to the above the equations 

(3.11, (3.2f, (4.11, (4.2), (4.31, and the conditions (2.3) and (3.19) 
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for s # I, and the equalities xS(tl) = 0. 

We consider in a similar manner the case in which tile interval 

t,, Q t < T contains one instant t = t2 at which the coordinates pass from 

the boundary to the interior of the region .Y*. In this case the point 

t = t2 must satisfy the condition 

fl k(Q, - . . , &(Gz>, u,(hJ, * ’ - f %rc Vz), hl = 0 (4.14) 

Therefore, after appropriate calculations, we obtain the equations 

a,o+g$() (s-2 ,...) n), &J-+;E&d-J (s=i ,... *n) (4.15) 
8 8 

8H” aH+ 

&P- 
k 

=o, p=o (k = 1,. . . , m) (4.16) 
k 

Tne end conditions will retain their form (4.10) and (J.ll), and the 

Erdmann-Weierstrass conditions will be expressible in the form 

h,” (fz) - ?L,+ (&) = 0 (s = 2, . . . , n), - h,+ &) = 0 (4.17) 

(HhO-- _ &l+),a = 0 (4.18) 

It should be noted once more that assumptions of a more general type 

than those which were made above will not change the results but may con- 

siderably complicate the process of obtaining them. The points of discon- 

tinuity of the control parameters are studied in the same way as in flI. 
The instants of discontinuity of the control parameters uk(t) and the 

instants at which the representative point passes to the boundary or to 

the interior of the region X* are considered in a manner similar to the 

discussion of [9]. In this case the corresponding relations will be 

identical with those listed in this section. 

We use similar methods to construct the expanded form of the station- 

ary state condition if the region X* is defined by a number of inequal- 

ities of the form (1.8). IIere we must consider the various portions of 

the boundary of the region X+ defined by various equalities of the type 

xs * = 0, corresponding to the above indicated inequalities, as well as 

the cases in which several of these equalities defining the boundary are 

satisfied simultaneously. 

A transition to closed regions X* defined by the inequalities (1.9) 

will likewise produce no significant complication. In this case f,r 3 0 

for xSp = XSp (21 and f,r (1) <Ofor xSg=Xf . All the other results re- S 
main valid. 

5. Weierstrass's necessary condition for a strict minimum 
of the functional J. If we repeat tlte reasoning and calculations 
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described in Bliss’s book [8] and the discussion [4] as applied to 

optimization problems with restrictions on the control parameters, then 

in the present case of restricted coordinates Vieierstrass’ s necessary 

condition for a strict minimum of the functional J can be represented by 

the inequality 

E>O (5.1) 

in which E is the Weierstrass function, defined by means of the formula 

E = L(x,, . . . , xn, -k . . . , k, ul, . . . , u,, hl, . . . , A,, pl,. . . , pr, t> - 

- L (Xl, * * * , %I, 6, . . . , iI, Ul, * . . , u,, hl, . . . , hn, p1, . . . , p.,t) - 

(5.2: 

Here n 
S 

and uk are functions which make the functional J a minimum, 

and X, and Cl, are any admissible functions satisfying the equations of 

the problem. 

The relation (5.2) is valid for any type of restrictions on the co- 

ordinates both in the interior and on the boundary of the region X*. In 

calculations we must substitute into the expression for E the function L 

with the appropriate superscript minus (-), plus (+), or zero (0). for 

which we should use the formulas given in the preceding two sections. 

These superscripts are omitted in the equality (5.2), as are the limits 

of the sums in its right-hand member. It should also be remembered that 

the number of the multipliers hs and pk may be different in different 

cases. 

Substituting the expression for L into (5.2) and making use of the 

inequality (5.1)) we obtain the following form for E’eierstrass’s neces- 

sary condition: 

HA (xl, . . . , xn, U,, . . . , Urn, A,, . . . , L, t) < 
<HA (xl,. . . , xn, ~1,. . . , urn, A,, . . . , L, t) (5.3) 

where the identity H, g 0 and the equality vrtlo = 0 are taken into 

consideration. 

The results obtained here for systems with restrictions of the first 

type on the coordinates may be formulated in a manner similar to that 

given in 11.21, where the corresponding problem was solved by methods 
making use of the construction of Pontriagin’s maxiaum principle. 

The above equations and relations were written in a form somewhat 
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more complicated than is necessary for the problems considered. This 

minor ComPiication (introduction of the superscripts zero (0), minus (-) 

and plus (t)) makes it possible to study more complicated problems, such 

as the problem of optimizing control processes in systems with bounded 

coordinates described by equations with discontinuous right-band sides. 

The above described results are valid in these oases without any signifi- 

cant alterations. In [5] they are used in the calculation of optimal 

modes of operation of vibrotransporters. 

6. Synthesis of optimal systems. IIe general mathematical 

formulation of the problem of synthesis of optimal systems with bounded 

control parameters is described in [2,1OI. It is stated as the problem 

of constructing functions vk = vk(xl, . . . . xn, t) which define the values 

of the control parameters at each point of the space xl, . . . . xn, t in 

such a way that a system motion described by Equations (‘2.1) and (2.2) 

makes the functional J a minimum for uk = uk, for any initial values of 

the coordinates. 

This statement of the problem, taking into account the restrictions 

on the coordinates and Equations (2.3). may be extended without any 

significant changes to the problems studied here. In the present section 

we note some properties of the problem of synthesizing optimal systems 

with bounded coordinates and control parameters, which distinguish it 

from the similar problem involving restrictions only on the control para- 

meters. For this reason we shall distinguish the problem of synthesizing 

optimal control parameters for a system with restrictions on the coordi- 

nates and on the control parameters from the similar problems obtained 

from it by a transition to an open region of coordinate variation. The 

results of solving the latter, if a solution exists snd can be con- 

structed, remain valid for 8ny optimal trajectories lying entirely in 

the interior of the region X* and even for trajectories which touch the 

boundary of this region at a finite number of points. 

For trajectories containing segments which lie entirely on the bound- 

ary of the region X*, the problem of synthesis becomes considerably more 

complicated. Thus, for example, if there are restrictions of the first 

type on the coordinates and if the system moves along the boundsry, then 

the equations describing the behavior of the system within the region X* 

must be supplemented by equation of the form (1.5); the functions uk m8Y 

not satisfy this equation. In this case, therefore, the synthesizing 

functions must be constructed separately for the segments of the optimal 

trajectories which lie within the region X* and for the segments which 

lie on its boundary. 

The same process must also be repeated for the general formUl8tiOn Of 

optimization problems if there are restrictions of the second type on the 
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coordinates. In this case, however, there evidently exists a sufficiently 

broad class of systems for whose synthesis a solution is provided by the 

solution of the corresponding problem with no restrictions on the coordi- 

nates. 

This will be the case when to the segments of optimal trajectories ly- 

ing in the interior of the region X8 we may assign trajectories which are 

optimal for the problem with no restrictions on the coordinates and which 

entirely contain the former trajectories and when the control parameters 

vary on the boundary of the region X8 in the same way as the open region 

of variation for the coordinates. Such an agreement between the two rules 

for variation of the control parameters may evidently be encountered in 

optimization problems with closed regions of variation of the control 

parameters in which the control parameters in which the control para- 

meters in optimal modes of operation assume only boundary values. 

7. Example. As an example to explain some of the general situations 

formulated above, we shall consider the problem of optimizing the length 

of time for transition from the state q(O) = TO, c(O) 

librium condition ~(7) = c(7) = 0 for a simple system 

of an astatic object, described by the equations 

= co to the equi- 

of indirect control 

T,+ = E, T&u (lu14t) (7.1) 

in which 9 is the input coordinate of the object, < is the coordinate of 

the control unit, 11~1 G 1 is 

M the input value of the amplifier . 
(control parameter). 

Fig. 1. 

We introduce the notation ~1 = TaTscp, x2 = 

optimization problem in the following manner: 

a and V. which satisfy the equations 

gi = 2x- 22 = 0, g,=x2--uuo, 

Fig. 2. 

Ts< and we formulate the 

among the functions xl, x2, 

\I = 23 + 212 - 1 = 0 (7.2) 

and the relations ~1 = x1( 7’) = 0, 9Z = x,(7’) = 0, select those which 
make the functional J = T a minimum. 
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Here, in order to avoid superfluous Lagrangean multipliers pl, the 

left end of the trajectory is considered fixed [3] and we introduce the 

function y which realizes a transition to the open region of variation 

of JJ and the additional control parameter V. This problem. with no re- 

strictions on the coordinates, has been fairly thoroughly studied [2,111. 

We construct the functions H and 9 

(7.3) 

17.4) 

by means of which we construct the equations 

and the Erdmann-Weierstrass conditions [31 

I.*+ (t*) = Al- (P). hy+ (t*) = A.?- (1*) (fix-)p = (fJ,+),e (T.6) 

valid in the open region of variation of the coordinates, as well as the 

equal it ies 

b(T) = - Pl, hg (T) = p2 17.7) 

The solution of the differential equations (7.5) which satisfies the 

conditions (7.7) is of the form 

Ll = --Pl, hl! =- p1 (f - 1’) - pz 1,731 

so that the function u = - A, changes sign no more than once in the in- 

terval to < t < T. Furthermore, we have v = 0 for l_~ # 0. Consequently, 

JJ = * 1 everywhere except at the single point t = t’, at which A, (t*) =O. 

Seyond this the solution of the problem is found in the same way as, 

for example, in [2,11]. As a result we obtain a family of optimal tra- 

jectories, shown in Fig. 1. 

For example, let the coordinate x2 be restricted by the inequality 

1x21 Q X2’ This restriction defines a strip of width 2X,, as shown in 

Fig. 2. The optimal trajectories located within this strip will consist 

of two parabolas. In such a system there may also be modes of operation 

in which x2 assumes values on the boundary x2 = + X2; the last stage of 

the motion will follow the branches of the parabolas M-0 and M+O passing 

through the origin. 

For restrictions of the first type JJ = 0; for restrictions of the 

second type the control parameter can be arbitrary and may take on a 
value corresponding to the previous stage of tile motion. Motion along 
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the boundary in both cases will be described by the equation i, = f X2, 

where the lower sign corresponds to the boundary ~2 = - X2 and the upper 

sign to the equality x2 = X2. 

If the interval of permissible variation of the coordinate x1 is de- 

fined by the inequality [xl/ G X,, the problem is solved in a manner 

similar to the previous one. The corre- 

sponding constructions are shown in 

Fig. 3. They we made for restrictions 

of the second type. For restrictions of 

the first type the condition ;I = 0 

(X = k X,) cannot be satisfied. 

Notion along the boundary is de- 

scribed by the equation i2 = u, u=* 1; 

since for the boundary points 

Ho ==hg”u3 + p”(u2 + u2 - 1) 

and consequently 

Fig. 3. 

or 

‘i,2o = const, u = 0 

This motion continues until the coordinate x2 becomes zero, which is 

shown in Fig. 3. In accordance with the Srdmann-,Weierstrass condition, 

A2 O = A,-( tl). Consequently, by ‘Jeierstrass’s condition the sign of the 

control parameter u will not change when x1 passes to the boundary of 

the region 1x1 < X,. 

In both of the above cases the “switching” of the Control parameter 

takes place along the curves M-0 and M+O. which define switching of the 

control parameters in a system without restrictions on the control para- 

meters. Consequently, if there are restrictions of the second type, the 

synthesizing functions will be found from the solution of the problem 

having restrictions only on the control parameters. 
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